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LIQUID CRYSTALS, 1991, VOL. 10, No. 3, 325-340 

Behaviour of biaxial nematics in the presence of 
electric and magnetic fields 

Evidence of bistability 

by T. CARLSSON 
Institute of Theoretical Physics, Chalmers University of Technology, 

S-412 96 Goteborg, Sweden 

and F. M. LESLIE* 
Department of Mathematics, University of Strathclyde, Livingstone Tower, 

26 Richmond Street, Glasgow G1 lXH, Scotland 

(Received 16 January 1991; accepted 23 March 1991) 

The behaviour of a biaxial nematic liquid crystal in the presence of electric and 
magnetic fields is discussed. In terms of the values of the magnetic susceptibilities 
and the dielectric permittivities, each biaxial nematic compound can be classified to 
belong to one of thirty-six different states. These states can be grouped together into 
three different classes, denoted by us as type A, B and C. The states belonging to each 
class exhibit a different qualitative behaviour in the presence of perpendicular 
electric and magnetic fields. While type A biaxial nematics always exhibit the same 
stable configuration in the presence of the fields, type B and C biaxial nematics 
exhibit two possible stable equilibrium configurations. Which of these is stable is 
determined by the magnitudes of the applied fields. The exchange of stability for 
type B systems can be modelled as a second order transition, while the exchange of 
stability for type C systems is of first order. In addition, the latter type can develop a 
bistable behaviour if certain conditions for the magnitudes of the electric and 
magnetic fields are fulfilled. 

1. Introduction 
Since the discovery of the biaxial nematic phase in a multicomponent system by Yu 

and Saupe [l] in 1980, a number of papers investigating the rheological properties of 
this system have appeared [2-71. These papers together give a fairly complete 
description of the mathematical structure of the elastic as well as the hydrodynamic 
theory of a biaxial nematic system. The paper by Carlsson et al. [7] gives a derivation of 
the viscous stress tensor, showing the connection with the Leslie-Ericksen stress tensor 
[S, 91 of uniaxial nematics, and also provides a thorough investigation of the flow 
properties of biaxial nematics under the influence of this stress tensor. 

Recently the biaxial nematic phase has been found [1&12] to also exist in 
thermotropic systems. This fact makes this phase more accessible to experimental 
investigations and in the future we would expect reports to appear regarding its elastic 
and viscous behaviour as well as attempts to measure the basic material parameters of 
the system. One important tool when performing this type of experiment is the 
possibility of controlling the system by means of electric and magnetic fields. However, 
it turns out that the behaviour of the biaxial nematic phase when subjected to electric 

* Author for correspondence. 
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326 T. Carlsson and F. M. Leslie 

a 

and magnetic fields is more complex than might be expected. It has been suggested by 
Chandrasekhar [13] that biaxial nematic systems can be aligned by the use of two 
crossed electric and magnetic fields. In this paper we show that although the idea of 
Chandrasekhar is correct it has to be applied with some caution to be useful. With 
regard to the values of the magnetic susceptibilities and the dielectric permittivities, 
each biaxial nematic compound can be classified to belong to one of thirty-six different 
states. We demonstrate that these states can be grouped together into three classes, the 
states belonging to each class exhibiting a unique behaviour in the presence of crossed 
electric and magnetic fields, and introduce the concept type A, B, and C, respectively, to 
distinguish these different types of behaviour. Also we find that one of these types can 
develop bistability if certain conditions for the magnitudes of the electric and magnetic 
fields are fulfilled. 

I. 

- 

: 

2. The electromagnetic free energy density and the electromagnetic torque 
The symmetry of the biaxial nematic phase can be visualized as a plate with sides a, 

b and c as shown by figure 1, and without loss of generality we can assume a > b > c. In 
order to describe the orientation of the plate we introduce three orthogonal unit vectors 
fi, m and as shown. These three unit vectors are subject to the constraints indicated, 
and two of them are sufficient to specify the order of the system unambiguously. In our 
choice one of them essentially corresponds to the director of the uniaxial phase and is 
called the long director, a. The rotation of the biaxial plate around the long director is 
uniquely determined by m, denoted by us as the transverse director (cf figure 1). 

In order to describe the dielectric and magnetic properties of the medium it is 
necessary to introduce three dielectric permittivities and threee magnetic suscepti- 
bilities, one for each principal axis of the biaxial plate. We denote these six constants E~ 

* c 

b 
Figure 1 .  Introduction of the biaxial plate. In order to describeJhe system we introduce the 

long director A, the transverse director rh and the unit vector I = A x rh. For each axis of the 
biaxial plate there is a dielectric permittivity E~ and a magnetic susceptibility xi. 
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Biaxial nematics in electric and magnetic fields 321 

and xi, respectively, where ci corresponds to the dielectric permittivity along the i axis 
and so on. Instead of discussing the problem in terms of these susceptibilities , it is 
frequently more convenient to introduce the corresponding dielectric and magnetic 
anisotropies, 

(1) &..=&.-&. 11 I 19 X i j = X i - X . .  

The application of a magnetic field B to the system leads to an induced magnetization 
M given by 

J 

M = P ~ , ~ [ X , ( B . ~ ~ ) ~ ~ + X , ( B - ~ ) ~ + X ~ ( B . T ) ~ ,  (2) 
where p o  is the permeability of free space. If instead the magnetic anisotropies 
introduced by equation (1) are used, we can write the induced magnetization as 

M = P ~ ’ [ X , I ( B . ~ ~ ) ~ ~ + X , I ( B ’ ~ ) ~ + X ~ B ] .  (3)  
The corresponding magnetic free energy density g x  can be shown to be 

B 

g X = - 1 M-dB. 
0 

(4) 

Introducing equation (2)  or (3) into equation (4) we obtain 

1 
g x =  --[x,,(B.fi)’ +x,(B*~)’  +XI(B.I)’] (5 )  

2PO 

2P0 

1 
= ----[x,,r(B * ii)’ + Xml(B * A)’ + xIB’]. 

D = E~[E,,(E - h)fi + E,(E * h)& + E~(E -Qn 
= eo[Eni(E * b)fi + cmI(E * &)m + qE], 

(6) 

In the same way we can derive the expression for the induced electric displacement 

(7) 

(8) 
and the electric free energy density 

60 

2 
g E  = --[E,(E * ii)’ + E,(E * A)2 + EI(E (9) 

Most often the governing equations of the system are written down as a balance of 
torque equations. From electromagnetic theory it is well-known that the electric and 
magnetic torques acting on the system are given by 

T x =  M x B, 

P = D  x E. 

3. Behaviour of a biaxial nematic in the presence of a single magnetic or electric field 
Let us investigate the effect of applying a magnetic field to a biaxial nematic liquid 

crystal. As is seen from equations (5) and (9), for the case when an electric field is applied 
instead the results to be derived can be taken over directly by making the substitution 
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328 T. Carlsson and F. M. Leslie 

I11 / I 
I1 

Figure 2. Ordering of a biaxial nematic in the presence of a magnetic field. The axis of the 
biaxial plate corresponding to the largest value of x i  points in the direction of the field, 
while the other two axes are free to point in any compatible direction perpendicular to the 
field. 

B 2 ~ i / p o - * ~ o E 2 ~ i .  Applying the magnetic field B= B2 the induced magnetization (3) can 
be written as 

B 

P O  
M = -[~,,n,d + Xrnlmzlfi + ~$1. (13) 

The corresponding magnetic torque is calculated from equations (1 1) and (13) to be 

I and 

r:=o. 
The equilibrium conditions for the system follow by demanding that the magnetic 
torque is zero; 

and 

Xnlnxnz  + Xrnlmxmz = O .  
These equations have only three solutions (provided x,, xrn and xl are all unequal) which 
are shown in figure 2. These solutions correspond to the situations for which each of the 
three principal axes of the biaxial plate points in the direction of the field. In order to 
determine which of these solutions is the stable one, it is necessary to compare the 
magnetic free energy density (see equation (6)) of the system in the three cases, this is 
given by 

B2 
&I3 

gr = - C x n d  + Xrn& + xJ. ( 1  6) 
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Biaxial nematics in electric and magnetic fields 329 

The three solutions of equation 15 are: 
R2 - 

Solution 1 nz= 1; gx = --x,. 
2PO 

Here fi is parallel to B while the m director is free to point in any direction perpendicular 
to B. 

B2 

2PO 
Solution 2 m, = 1; gx = - -x,,,. 

Here A is parallel to B while then director is free to point in any direction perpendicular 
to B. 

B2 

2PO 
Solution 3 1, = 1; g x  = - -xI. 

Here f is parallel to B while the n and the m directors are free to point in any compatible 
direction perpendicular to B. 

Which of the three solutions is stable follows by determining which minimizes the 
free energy density. Thus we find that the axis corresponding to the largest magnetic 
susceptibility points in the direction of the field while the system adopts the same 
magnetic energy for each possible direction of the other two axes, now perpendicular to 
the field, and thus the direction of these two axes is not determined by the field. 

4. Classification of biaxial nematics with respect to their electromagnetic properties 
The discussion of the last section demonstrates that the application of a magnetic or 

an electric field across a biaxial nematic system does not order the system completely. 
The aim of this paper is to show how such an ordering can be achieved by the 
simultaneous application of one magnetic and one electric field. The response of the 
system in this case, however, depends strongly on how the three dielectric permittivities 
and the three magnetic susceptibilities are mutually related to each other. Before 
proceeding it is necessary, therefore, to introduce a classification of the biaxial nematic 
compounds with respect to their electromagnetic properties. 

In order to describe the biaxial nematics we introduce three dielectric permittivities 
E~ and three magnetic susceptibilities xi. The constants in each of these two groups can 
be mutually related in six different ways with respect to their magnitudes. Thus there 
are altogether thirty-six different ways of arranging the six constants E~ and xi. In order 
to keep track of this ordering we introduce a state vector @::,,in the following way. The 
three upper indices of $ refer to the ordering of the magnitudes of the dielectric 
permittivities, while the three lower indices refer to the ordering of the magnitudes of 
the magnetic susceptibilities. Thus the state vector $yir is used to describe a compound 
for which E~ > cj  > E~ and x p  > x4 > xr. We now introduce a classification of the thirty-six 
state vectors in such a way that a state vector is said to belong to one of the three 
different types depending upon how the ordering of the indices i,j and k is related to the 
ordering of p ,  q and r .  

Type A 
The twenty-four state vectors for which the axis with the largest dielectric 

permittivity does not coincide with the axis with the largest magnetic susceptiblity, i.e. 
i # p .  The state vector v$i (i.e. E, > E ,  > E ~ ,  xrn > x1 > x,) is an example of a type A biaxial 
nematic. 
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330 T. Carlsson and F. M. Leslie 

Type €3 
The six state vectors for which the ordering of the three dielectric permittivities is 

the same as that of the three magnetic susceptibilities, i.e. i = p , j =  q, and k = r .  The state 
vector $;$(i.e. E, > E, > X, > x m  > x1) is an example of a type B biaxial nematic. 

Type c 
The six state vectors for which the axis with the largest dielectric permittivity 

coincides with the axis with the largest magnetic susceptibility but for which the 
ordering of the two remaining dielectric permittivities is opposite to that of the 
magnetic susceptibilities, i.e. i = p ,  j = r and k = q. The state vector 1);2 (i.e. E, > E, > 
X , > X ~ > X ~ )  is an example of a type C biaxial nematic. 

The reason for this classification becomes obvious in section 7, where we show that 
the three different types of biaxial nematics each behave in a unique way when subject 
to simultaneous electric and magnetic fields. 

5. Equilibrium configurations in the presence of two perpendicular electric and 
magnetic fields 

We now derive the possible equilibrium configurations for the system when subject 
to one electric and one magnetic field, applied to the sample at right angles to each 
other. In order to be able to decide which field strengths will correspond to the limiting 
cases strong electric field and strong magnetic field it is useful to introduce a notation 
that incorporates the coupling constants of the fields into the dielectric permittivities 
and the magnetic susceptibilities 

and 

Assuming the fields to be applied in the x and z directions, i.e. E = E2 and B = B l ,  the 
electromagnetic torques acting on the system calculated from equations (3), (8), (1 1) 
and (12) are 

1 r? = f n f n y n z  + fmlmymz,  

The equilibrium configurations of the system are those for which the torque in 
equations (18) vanishes. From equations (18) we see immediately that all configurations 
for which two of the three vectors 6, m and are parallel to the fields are possible 
equilibrium configurations of the system. For certain restricted ranges of the 
susceptibilities and permittivities, other solutions of these equations may exist, but for 
the present we prefer to exclude such exceptional cases. It is helpful to introduce a 
notation for the six solutions in the following way. The solution Sij corresponds to that 
for which the i director points in the direction of the electric field and the j director is in 
the direction of the magnetic field. Thus the solution for which n, = 1 and m, = 1 is 
denoted S,, and so on. Figure 3 shows the six possible solutions and also gives the 
appropriate conditions for each of these to be stable. These conditions are derived in 
the next section. 
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Biaxial nematics in electric and magnetic jields 33 1 

r: = a2(riZny - riynz) + a3(fiynz - fizny) + Pz(mzm, - kymz)  + P 3 ( ~ , m Z -  &my) ’ 

+ (fixmx + fiymy + ~zmz)CPu,(mzn, - mynz) + Pz(mynz - mzny)l, 

+ (fixmx + iym, + fizmz)[Pl(mxnz - mznx) + PAmznx - mxnz)l 

+ (fixmx + fiymy + fizmz)rPL,(m,nx- mxny) + CLz(mxny - m,nx)l 

r; = a2(rixnz - riznx) + a3(fiznx - rixnz) + p 2 ( ~ x m z  - rhZmx) + P3(%mx - mXmJ 

and 
= a2(riYrzx - rixn,,) + a3(fixny - fiynx) + &(rizymx - rfzxm,,) + P3(rit,m, - litym,) 

S nm 

> (21) 

Figure 3. The six equilibrium configurations of biaxial nematics in the presence of two 
perpendicular electric and magnetic fields. The conditions for each of the solutions to be 
stable are also displayed in the figure. 
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332 T. Carlsson and F. M. Leslie 

The relevant equation to study when discussing the stability is the balance of torque 
equation 

rr + r x c  = 0. 

A small perturbation of any of the six equilibrium configurations can be expressed by 
three infinitesimal rotations a, b and y around the x, y and z axes, respectively. Let us 
study the solution Snl characterized by fi = 8, m = 9 and f =  6. Assuming a, 0 and y to be 
small, the perturbed directors are 

(22) 

and 

I m," -Y, 
my% 1, 

m, % a. 

The torque equation (22) in this case reduces via equations (18) and (21) to 

and 

where we have introduced the three rotational viscosities [7] of the system which are 
given by 

and 

~ n r n = a 3  + ~ 3  -8 ,  + ~ 2  - P I  > 0. J 
By thermodynamical arguments [7] the rotational viscosities must all be positive 
definite. From equations (25) we see that the perturbation of the system will relax back 
to the equilibrium a = p = y = 0 if the coefficients multiplying the right hand sides of 
these equations are all negative. The stability conditions for the solution S,, therefore 
read 

1 E",m > 0, 

and 

By repeating this type of analysis we can derive stability criteria for the other five 
equilibrium configurations Si j .  The results of such an analysis are given in figure 3. We 
can of course also derive the remaining five stability criteria by the proper interchange 
of the indices n, m and 1 in equations (27). The next section discusses the interpretation 
of the stability conditions given in figure 3 since this is not entirely straightforward. 
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Biaxial nematics in electric and magnetic fields 333 

7. Interpretation of the stability conditions-vidence of bistability 
Figure 3 displays the conditions which must be fulfilled if a given equilibrium 

solution Sijis a stable one. For each solution to be stable there are three conditions. The 
first and the last of these conditions which are of the type E;.>O and j i j > O  are 
equivalent to writing E ~ ~ >  0 and xij > 0, and are independent of the field strengths. The 
middle conditions, which read Zij>fij can also be written eoE2cij>p; lB2xij and are 
dependent on the ratio between the electric and magnetic field strengths. This makes 
the analysis of the stability criteria a little more involved and we now show that, 
depending on the ordering of the dielectric permittivities and the magnetic suscepti- 
bilities, a biaxial nematic compound exhibits one out of three completely different 
qualitative behaviours in the presence of the fields. For the sake of convenience we 
observe from electromagnetic theory that the relation . 

1 
GoPo = c' 

is valid, c being the speed of light in a vacuum. In order to measure the ratio between the 
electric and magnetic field strengths it is helpful to introduce a dimensionless parameter 
6 according to 

Our task is now to derive the rules determining which type a given state vector belongs 
to and which solution is stable for a given 6. 

Type A 
The state vectors $y:r for which i # p  belong to this type. Compounds belonging to 

this type always adopt the solution St ,  irrespective of the value of 6. This is because 
there is no conflict between the electric and magnetic torques. As the largest dielectric 
permittivity belongs to a different axis than the largest magnetic susceptibility, the 
biaxial plate simply orients itself with the axis with the largest dielectric permittivity 
parallel to the electric field and the axis with the largest magnetic susceptibility parallel 
to the magnetic field. There are altogether twenty-four state vectors belonging to this 
type, and these can be divided into six subgroups, the four state vectors within each 
subgroup exhibiting the same stable solution. 

fulfils the stability 
conditions of the solution S,, but violates the stability conditions of all the other five 
solutions. Table 1 gives all twenty-four state vectors of type A and their corresponding 
stable solutions. 

As an example it is easy to verify that the state vector 

Type B 
The state vectors with the same ordering for both the dielectric permittivities and 

the magnetic susceptibilities, i.e. those which can be written belong to this type. 
Each of these can exhibit one of two stable solutions depending on the ratio 6 between 
the field strengths. The solution Sij is stable for strong electric fields, which in this case 
means 6 > xij/zij. If the magnetic field dominates (6 < x i j / ~ i j )  the solution Sji  is the stable 
one. This behaviour is also easy to understand. As the largest dielectric permittivity 
belongs to the same axis as the largest magnetic susceptibility there will be a 
competition between the electric and magnetic torques. Both fields act to orient the i 
axis in its direction and the strongest field eventually dominates. The other field then 
orients the axis with the second largest permittivity or susceptibility. 
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3 34 T. Carlsson and F. M. Leslie 

'Table I .  The twenty-four type A state vectors of biaxial nematics and the corresponding stable 
equilibria. Irrespective of the values of the field strengths, the type A systems exhibit only 
one stable orientation. 

Type A biaxial nematic 

State vector Stable solution 

Table 2. The six type B state vectors of biaxial nematics and the corresponding stable equilibria 
as they depend on 6. Depending upon whether the electric or the magnetic field is the 
stronger, the system exhibits one out of two stable solutions. 

Type B biaxial nematic 

State vector Stable solution 

$$ X i j  X i j  

E i j  E i j  

sij if 6 > - Sj i  if 6>- 

$2:: 

$2:: 

Xnm Xnm 

Enm E m n  
Snm if 6>- Smn if 6<- 

Xmn Xmn 

Emn Emn 
Smn if 6>- Snm if 6<- 

X l n  Xln 

&In &In 
S,, if 6>- S,, if 6 <- 

X.1 X.1 
S1, if 6<- 

E.1 &Ill 
S,, if 6>- 

Xml Xmr 

Ern1 Em, 

Xim X l m  

Elm Elm 

Sml if 6>- S,, if 6<- 

Sm, if 6<- S,, if 6>- 

An example of a state vector belonging to type B is $:$. It is easy to convince oneself 
that this state vector fulfils the stability criteria of the solution S,, if ~>x, , , /E , , ,  a 
condition which is equivalent to t?,,>jnm. If instead S<X,,/E,, the solution S,, is 
stable. None of the other four sets of stability conditions can be fulfilled by this state 
vector. Table 2 gives the six state vectors belonging to type B and also their 
corresponding stable solutions in terms of their dependence on 6. 
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Biaxial nematics in electric and magnetic fields 335 

Type c 
To this type belong the state vectors for which the largest dielectric permittivity 

and the largest magnetic susceptibility are related to the same axis, but for which the 
ordering for the two remaining axes are opposite, i.e. the state vectors of the form $!it. 
Each of these state vectors can exhibit one of two stable solutions depending on the 
ratio 6 between the field strengths. However, the conditions for stability overlap in such 
a way that both the solutions can be stable simultaneously for some intermediate values 
of 6. Thus this system exhibits bistability for this range of 6. In this case also, there is a 
conflicting situation as both fields seek to align the i axis parallel to themselves. It is 
easy to understand that if the electric field dominates (6--+co) the i axis is parallel to it 
and the solution S ,  is stable. If, on the other hand, the magnetic field dominates (6+0) 
the i axis is parallel to it and the solution S j i  is the stable one. In order to understand the 
behaviour for the intermediate values of 6 where bistability occurs it is helpful to 
consider figure 4. In this figure the ordering of the parameters, ci > t j  > E~ and xi > X k  > x j ,  
is visualized in a level diagram and it is readily verified that the inequalities 

are generally valid for type C systems. The conditions for the solution S ,  to be stable 
can be written 

1 E i j  > 0, 

&k > f i k  

and 

X k j  > O. 
The first and the third of these conditions are trivially fulfilled by the solution s i k  as we 
can see from the level diagram of the figure, and the second condition can be rearranged 
to read 

6>-. 

By permuting the indices in equation (31) we can write the stability conditions for the 
solution Sji  as 

(32) X i k  

&ik 

and 
(33) 

Again the first and third conditions are trivially fulfilled by the solution considered and 
the second of the conditions can be written 

(34) Xij  

Ei j  
6 <-, 

where the change of the inequality sign arises from the fact that cji is now negative. Thus 
the solutions S ,  and Sj i  are stable if the conditions from equations (32) and (34) are 
fulfilled, respectively. From the inequality in equation (30) we see that the lower limit of 
6 for the solution S ,  is always smaller than the upper limit of 6 for the solution Sji. Thus, 
when 6 falls between these values the system exhibits bistability. 
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336 T. Carlsson and F. M. Leslie 

TYPE C i3IAXIAL NEMATICS 

C > c  > c k  I y l>xk>xI ' I  

-u. 
Ic < x Ir < x I t . .  ikrk i k i j  i j r ]  

I I I 

5, STABLE Sji AND Sik STABLE 

6 = xiJE.. 6 = Xjk/Pik [6  = WdI 11 

Figure 4. Stability of type C biaxial nematics in the presence of two perpendicular electric and 
magnetic fields. If the magnetic field dominates (6 < xik/cik), only the solution Sj i  is stable. If, 
on the other hand the electric field dominates (6 > ,yij/cij), only the solution S ,  is stable. 
When the two fields are of comparable strengths (xik,cik < 6 < x ~ ~ / E ~ ~ ) ,  both solutions are 
stable and the system exhibits bistability. The qualitative behaviour of the electromagnetic 
free energy density for different values of 6 is also shown. 

The nature of the bistability is visualized in the energy diagrams in figure 4. These 
diagrams are only to be interpreted qualitatively as they give one dimensional plots for 
a three dimensional system. The electromagnetic energy g,, for the two solutions can be 
calculated from equations ( 5 )  and (9) and is shown to be 

( 3 5 )  

( 3 6 )  

g X d s i k ) =  -$Ei f fj) 

and 

g,e(Sji) = -$Ej + ji). 

Ei + X"/( = Ej + ji, 
These two energies are equal provided 

an equality which can be rearranged to read 

X i k  6=-. 
E i j  

(37) 

From the inequality (30) we are assured that this value of 6 falls within the bistable 
region. Thus, when 6 = X i k / & i j  both the solutions are equally stable. When 6 decreases 
the energy of the solution Sj i  is lower than that of Sik and the latter is, strictly speaking, 
metastable. Whether a transition from S ,  to S j i  takes place in this case depends upon 
the value of the energy maximum between the solutions. However, it is quite obvious 
that from a practical point of view the system exhibits bistability in an interval around 
the value 6 = ,y ik/qj ,  the width of which depends on factors not considered in this work. 
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Table 3. The six type C state vectors of biaxial nematics and the corresponding stable equilibria 
as they depend on 6. For intermediate values of 6 two stable solutions exist and the system 
exhibits bistability. 

~- 

Type C biaxial nematic 

State vector Stable solution 

X i k  X i k  X i j  X i j  

&ik &ik  E i j  E i j  

X n r  X n l  Xnm Xnm 
S,, if 6 >- 

&"I En1 &em En, 

Xlm X i m  X l n  XI" 
S,, if 6>- 

Elm Elm 81" &in 

Xml Xmr Xmn Xmn 
S,, if 6>- 

Em, Em, Em, Em, 

Xnm Xnm X n l  Xnr 
S,, if 6>- 

Enm En, En1 En I 

X l n  X l n  X l m  X i m  

&In &In %m Elm 

Xmn Xmn Xml  Xmr 

Em, Ern, Em, Em1 

$ j k  S j i  if 6 <- S, and Sji  if-<6<- Sit if 6>- IkJ 

S,, if 6<- S,, and S,, if-<6<-- *;2 

*2l 

*z 

*:2 

*I;; 

*:fn 

S,, if 6 <- 

S,, if 6<- 

S,, if 6 <- 

S,, if 6<- S,, and SmI if -<a< - S,, if 6>- 

S,, if 6<- S,, and S,, if-<&- S,, if 6>- 

S,, and S,, if - < 6 < - 

S,, and S,, if -<6<- 

S,, and S,, if-<6<- 

As an example of a type C state vector consider $:g. It is easy to convince oneself 
that this state vector exhibits the stable solution S,, if 6 <x,,/E,,. If on the other hand 
6 > X,~/E, , ,  the solution S,, is stable. In the overlapping region X , , ~ / E , ~  < 6 < x,,/E,, both 
solutions are stable, exhibiting an exact bistability in the case 6 = X , , ~ / E , ~  None of the 
other four solutions can be stable for this state vector. Table 3 gives the six state vectors 
belonging to type C and also the corresponding stable solutions in terms of their 
dependence upon 6. 

8. Discussion 
The recently discovered thermotropic biaxial nematic phase provides a fascinating 

system, the behaviour of which in many respects is similar to that of uniaxial nematics. 
However, due to the fact that the presence of the transverse director increases the 
dimensionality of the director field, many phenomena occurring in biaxial nematics will 
be more complex [7 ] .  Thus we have shown that a biaxial nematic can be assigned one of 
thirty-six different state vectors in respect of its electromagnetic properties, this is in 
marked contrast to the four different ways (E,<O or E,>O, x,<O or ,ya>O) that are 
found for the dielectric and magnetic anisotropies of the uniaxial nematic system. 

In section 7 the thirty-six state vectors are shown to belong to one of three types, 
each of which exhibits a qualitatively different behaviour when the system is subject 
to perpendicular electric and magnetic fields. In the case when the largest dielectric 
permittivity does not belong to the same axis as the largest magnetic susceptibility, the 
behaviour of the system is simple and easy to understand (type A). If, however, the 
largest dielectric permittivity and the largest magnetic susceptibility belong to the same 
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axis, there is a conflict between the electric and magnetic torques and the behaviour is 
not so easily understood intuitively. However, following an analysis of the stability 
conditions for the six possible configurations of the system, the type €3 behaviour is 
readily accepted. Here the biaxial plate reorients between two stable solutions 
depending upon whether the electric or magnetic field is dominating as discussed in the 
previous section. The type C behaviour, however, causes a surprise because here the 
transition between the stable solutions in the limiting cases of strong electric or 
magnetic fields is connected with an interval of 6 for which both solutions are stable. 

One can reach an intuitive understanding of the origin of the difference between 
type B and type C behaviour in the following way. The two competing solutions for the 
type B systems are of the form S i j  and Sji and these two solutions can be obtained from 
each other by a simple rotation around the y axis (cf figure 3). The condition for the 
transition to occur is Eij = &. By examining the electromagnetic torque from equation 
(18) we see that this condition implies r y  = 0, and thus at the transition all orientations 
for which the i and j axes are confined within the plane defined by the fields actually 
correspond to zero torque. In the language of phase transitions this corresponds to the 
transition being continuous or of second order. For the type C system on the other 
hand the situation is more complicated. The two competing solutions are of the form S, 
and Sji and these two solutions cannot be obtained from each other by a simple 
rotation around any of the symmetry axes of the system. Examining the electromagne- 
tic torque from equation (18) we see that for the two values of 6 for which one of the 
solutions ceases to be stable, there is no route towards the other stable equilibrium for 

TYBE B :  CONTINUOUS TRANSITION 

STATE VECTOR vli: 

Iv i_/ - v v  
TYPE C :  DISCONTINUOUS TRANSITION 

STATE VECTOR V!Jk 
'kJ 

Figure 5 .  The qualitative behaviour of the electromagnetic potential plotted for different values 
of 6. This illustrates the difference in behaviour for the transition between stable states for 
type B and type C biaxial nematics. The transition for type B systems is continuous and the 
exchange of stability takes place for one given value of 6. For type C systems there is an 
intermediate interval of 6 for which two solutions are stable and the transition between 
them is discontinuous. The value of 6 for which the transition occurs depends upon 
whether 6 is increasing or decreasing, and thus the transition exhibits a hysteresis effect. 
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which the torque is overall zero as was the case for the type B behaviour. Thus the 
situation corresponds to a first order or discontinuous transition. Such transitions are 
known to exhibit the feature of coexistence of more than one stable state. In figure 5 we 
have sketched sequences of electromagnetic potential diagrams for type B and C 
behaviour in order to visualize the difference between the two cases. 

One important lesson to be learned from this paper is that when trying to orient a 
biaxial nematic sample by the means of electric and magnetic fields, difficulties can arise 
if sufficient care is not exercised. For example, if attempting to control the directors by 
the use of electric and magnetic fields in a flow experiment, it is necessary to use strong 
fields to overcome the viscous torque. Dealing with a type A biaxial nematic causes no 
problems, because there is always one unique, stable orientation irrespective of the field 
strengths for this system. For the type B biaxial nematic some problems could arise, 
because while it is necessary to use strong fields, we probably also require a value of 6 
for which 6>>xij/cij or 6<<xij /c i j  This is because if 6zxij/cij  for a type B system, the 
electromagnetic orientational torque around the y axis is small due to the competition 
between the fields. We can therefore find ourselves in a situation where it is necessary to 
compromise, because if 6 is too close to xij /c i j  we have a poor orientational effect from 
the fields, although still wishing to keep both fields as strong as possible to have the 
electromagnetic torque large compared to the viscous one. For the type C biaxial 
nematic the situation is even more complex. Again it may be necessary to compromise 
concerning the field strengths, but even worse, in the bistable region of 6, the 
orientation obtained depends upon the configuration of the system prior to the 
application of the fields. Thus we must carefully examine the situation in this case and 
apply the fields in the proper order to achieve the orientation desired. When bistability 
occurs, initial application of an electric field orients the i axis parallel to the field. By 
then applying the magnetic field, the other two axes of the biaxial plate are ordered. In 
this way we obtain the solution S,. By reversing the order of application of the fields, 
the solution Sji is obtained instead. 

Finally, it is worth mentioning that there are many problems associated with 
electromagnetic torques in biaxial nematics that we have not addressed in this paper. 
One interesting problem to investigate are the shapes of the attracting domains in the 
three dimensional director space in the case of bistability. Such an investigation would 
be an additional guide to the experimentalist who wants to orient a biaxial nematic 
sample. Other interesting problems to study are the torque patterns and the 
distribution and stability of equilibrium orientations in the case of competing 
electromagnetic and viscous torques. Our opinion is that the behaviour of the system in 
the latter case will exhibit many interesting features, and show a much more complex 
behaviour than is the case for the uniaxial nematic phase. 
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